
cyral.com l White Paper 1

WHITE PAPER

10 Reasons Why it is OK
to Hate Database Proxies,
but Love Sidecars!

cyral.com l White Paper 2

10 Reasons Why it is OK to Hate Database
Proxies, but Love Sidecars!

Designing Data Layer Sidecar for the Cloud
Native World

Comparison of Traditional Database Proxy
and Data Layer Sidecar

3

5

7

Contents

cyral.com l White Paper 2

cyral.com l White Paper 3

10 Reasons Why it is OK to Hate Database
Proxies, but Love Sidecars!
A brief history of the Database Proxy
A proxy is an interception service that sits between the client and the server. When the proxy is deployed close to
the client, it is called a forward proxy. When the proxy is deployed closer to the server such that the clients do not
know about the origin of the server, it is known as a reverse proxy.

A database proxy (ProxySQL, MaxScale, etc.) is basically a reverse proxy built to provide benefits like security,
scalability, high availability, etc. for databases, key-value stores, message queues, etc.

Before highly distributed data repositories (MongoDB, Cassandra, etc.) became popular, a database proxy enabled
scaling and performance by providing connection pooling to the backend data repositories, high availability by
routing requests to a healthy data backend (standby when the primary failed) reducing failover time. Such proxies
are generally considered L4 or SQL-agnostic proxies and include HAProxy, Nginx, etc.

With applications moving to the cloud, and data volumes skyrocketing, modern data repositories started providing
scalability and high availability functionality using data sharding and replication with a distributed coordinator-
worker architecture. To shield the application logic from the underlying topology changes, SQL-aware database
proxies such as ProxySQL, MaxScale, etc. started gaining traction. These proxies can perform tasks such as SQL
read/write query routing by directing read queries to workers and write queries to the master in the coordinator.
SQL-aware proxies are also used in such scenarios when there are needs to operate at SQL layer to cache SQL
query responses to gain in performance, rewrite and block SQL queries for security reasons, etc.

With the maturity of container technology, especially docker, service oriented architecture using microservice as
its composable unit started gaining widespread popularity. Cloud-native applications started to use microservices
as their building blocks, lending themselves to the DevOps methodology of Continuous Integration and Continuous
Deployment.

cyral.com l White Paper 4

While the new architecture based on microservices have resulted in many benefits, it has exposed challenges
specifically around security and traffic management. Communication between these disaggregated microservices
resulted in an explosion in the east-west traffic, with no concrete perimeter to enforce security rules on and lack
of a single ingress/egress point where traffic management could be performed. As a result, the traditional model
of deploying a proxy between the application and the data repository (databases, data warehouses, etc.) no longer
works in this new world.

To solve this problem, Cyral invented the concept of a stateless interception service that can be deployed using a
sidecar pattern.

cyral.com l White Paper 5

Designing Data Layer Sidecar
for the Cloud Native World
With high availability and scalability often baked into the architecture and deployment model of cloud-native
applications, Cyral’s data layer sidecar essentially acts as a circuit breaker for these cloud native applications,
natively integrating with various service orchestration tools (e.g. Kubernetes). The key design aspects of Cyral’s
sidecar are:

1. Stateless – Unlike traditional application proxies, our sidecar defers all session state management to the data
layer connections themselves. This elegant design allows multiple sidecars to be deployed in a high-availability
configuration and enables a true fail-open design.

2. Output Filtering – One key insight behind our sidecar is that it can pass read requests to the data layer without
any delay, while blocking their corresponding results if the request is determined malicious or disallowed. This
analysis of the request happens asynchronously, while the data layer is processing it in parallel, allowing the
original read operation to happen without any extra delay.

cyral.com l White Paper 6

3. SaaS-based Control Plane – Our customers can deploy sidecars in several different ways, and easily administer
them using a SaaS based control plane. All integrations and provisioning can be managed centrally from here. It
offers intuitive workflows to implement security policies and react to threats.

Cyral sidecars can be deployed in customer’s cloud or on-prem environment as a Kubernetes service, autoscaling
group, cloud function or host-based install. All the data flows and sensitive information stays inside the customer’s
environment where the sidecar is deployed, creating no risk of spillage.

cyral.com l White Paper 7

Comparison of Traditional Database Proxy
and Data Layer Sidecar

cyral.com l White Paper 8

Cyral delivers enterprise data security and governance across all data services such as S3, Snowflake, Kafka,
MongoDB, Oracle and more. The cloud-native service is built on a stateless interception technology that monitors
all data endpoint activity in real-time and enables unified visibility, identity federation and granular access controls.
Cyral automates workflows and enables collaboration between DevOps and Security teams to automate assurance
and prevent data leakage. Cyral is venture-backed by Redpoint, A.Capital, Costanoa and SVCI. Follow the company
on Twitter at @CyralInc

cyral.com/demo

About Cyral

cyral.com l White Paper

