F Cyral WHITE PAPER

10 Reasons Why it is OK
to Hate Database Proxies,
but Love Sidecars!




Contents

10 Reasons Why it is OK to Hate Database
Proxies, but Love Sidecars!

Designing Data Layer Sidecar for the Cloud
Native World

Comparison of Traditional Database Proxy
and Data Layer Sidecar

cyral.com | White Paper



10 Reasons Why it is OK to Hate Database
Proxies, but Love Sidecars!

A brief history of the Database Proxy
A proxy is an interception service that sits between the client and the server. When the proxy is deployed close to
the client, it is called a forward proxy. When the proxy is deployed closer to the server such that the clients do not

know about the origin of the server, it is known as a reverse proxy.

A database proxy (ProxySQL, MaxScale, etc.) is basically a reverse proxy built to provide benefits like security,
scalability, high availability, etc. for databases, key-value stores, message queues, etc.

Application Hosts Database Hosts

Proxy Server @

Dol [Dol| Dol (Dol

Before highly distributed data repositories (MongoDB, Cassandra, etc.) became popular, a database proxy enabled
scaling and performance by providing connection pooling to the backend data repositories, high availability by
routing requests to a healthy data backend (standby when the primary failed) reducing failover time. Such proxies
are generally considered L4 or SQL-agnostic proxies and include HAProxy, Nginx, etc.

With applications moving to the cloud, and data volumes skyrocketing, modern data repositories started providing
scalability and high availability functionality using data sharding and replication with a distributed coordinator-
worker architecture. To shield the application logic from the underlying topology changes, SQL-aware database
proxies such as ProxySQL, MaxScale, etc. started gaining traction. These proxies can perform tasks such as SQL
read/write query routing by directing read queries to workers and write queries to the master in the coordinator.
SQL-aware proxies are also used in such scenarios when there are needs to operate at SQL layer to cache SQL
guery responses to gain in performance, rewrite and block SQL queries for security reasons, etc.

With the maturity of container technology, especially docker, service oriented architecture using microservice as
its composable unit started gaining widespread popularity. Cloud-native applications started to use microservices
as their building blocks, lending themselves to the DevOps methodology of Continuous Integration and Continuous

Deployment.

cyral.com | White Paper 3



While the new architecture based on microservices have resulted in many benefits, it has exposed challenges
specifically around security and traffic management. Communication between these disaggregated microservices
resulted in an explosion in the east-west traffic, with no concrete perimeter to enforce security rules on and lack
of a single ingress/egress point where traffic management could be performed. As a result, the traditional model
of deploying a proxy between the application and the data repository (databases, data warehouses, etc.) no longer

works in this new world.

To solve this problem, Cyral invented the concept of a stateless interception service that can be deployed using a

sidecar pattern.

Stateless Interception
Output Filtering

Cloud Native

cyral.com | White Paper 4



Designing Data Layer Sidecar
for the Cloud Native World

With high availability and scalability often baked into the architecture and deployment model of cloud-native
applications, Cyral’s data layer sidecar essentially acts as a circuit breaker for these cloud native applications,
natively integrating with various service orchestration tools (e.g. Kubernetes). The key design aspects of Cyral’s
sidecar are:

1. Stateless — Unlike traditional application proxies, our sidecar defers all session state management to the data
layer connections themselves. This elegant design allows multiple sidecars to be deployed in a high-availability
configuration and enables a true fail-open design.

Traditional Interception Interception Using

Using Proxy Cyral Sidecar
Policy Engine

Policy

Engine
State Manager

S S
Interceptor Interceptor
Interceptor
D
Interceptor

2. Output Filtering — One key insight behind our sidecar is that it can pass read requests to the data layer without
any delay, while blocking their corresponding results if the request is determined malicious or disallowed. This
analysis of the request happens asynchronously, while the data layer is processing it in parallel, allowing the
original read operation to happen without any extra delay.

e e Cyral Sidecar ~ ------- oo \

Read
Request

olo ;
°6§o° Interceptor @

Response
N N S L]
. Context
Protocol Handler
a : .
Local Policy ' Pol{cy
Executor : Engine
A

Request Analyzer

Logs, Metrics, Traces

cyral.com | White Paper



3. SaaS-based Control Plane — Our customers can deploy sidecars in several different ways, and easily administer
them using a SaaS based control plane. All integrations and provisioning can be managed centrally from here. It
offers intuitive workflows to implement security policies and react to threats.

QV/S7
i Cyral a‘a IA
- aa

ADMINISTRATION
Inventory

Policies

Models

2 i% &6@

Cyral sidecars can be deployed in customer’s cloud or on-prem environment as a Kubernetes service, autoscaling
group, cloud function or host-based install. All the data flows and sensitive information stays inside the customer’s
environment where the sidecar is deployed, creating no risk of spillage.

®@ 06 0 ==

cyral.com | White Paper 6



Comparison of Traditional Database Proxy
and Data Layer Sidecar

' .
Database Proxy Cyral’'s Data Layer Sidecar
Bolted-on using scripts, IP address hardcoding, etc., with often Deployed using latest cloud orchestration platforms like Kubernetes
no good integration with cloud orchestration platforms such Designed to be used with tools like Terraform, CloudFormation, etc.
Cloud as Kubernetes
Native Not suitable for the highly distributed microservices world. Supports a modern mesh architecture rather than spoke and hub
Spoke and hub model -traffic from microservices forced to
come to the proxy which then sends to the destination
A proxy is deployed in the same network where services Sidecars can reside in the same host as that where the service
Application reside but in a different compute rack runs on
Affinity Services are proxy aware, configured to talk to the proxy Services are not sidecar aware, and traffic is routed to/from the
rather than the destination services using IPTABLE rules or BPF
Stateful traffic inspection Stateless traffic inspection
Function Load balancing Circuit breaker capability (Prevent data breaches, unauthorized
data access, etc.)
High availability through overprovisioning High availability through autoscaling
Deployment .
Used for North-South traffic Designed to be omnidirectional
Configured using non-standard formatting Configured using JSON or YAML
Control Minimal support for REST APIs (e.g. update pool of servers to Support for REST APIs or APls over gRPC
be load balanced) . . )
Plane Centralized control plane to manage the various sidecars
Generally, no centralized control plane for managing a
distributed set of proxies
No horizontal scaling Horizontal scaling and elasticity, integrates with container
. orchestration platforms such as Kubernetes
Scalabilit No elasticity
calability . Stateless circuit-breaker design results in negligible latency for
Introduces extra hop between the service and the data X ;
. : . traffic to the data repository
repository, thereby introducing network latency
TLS encryption/decryption TLS encryption/decryption
No identity protection Inbuilt identity protection using mTLS
Security No native support for authenticating the connecting Provides native authentication and authorization capability
services
No support for authorization policies
Minimal APl support API-first design
APls Lacks integration with modern tools for logging, Supports integration with DevOps tools such as Prometheus,
monitoring, visualization, CI/CD, etc. Grafana, ElasticSearch, FluentD, and Kubernetes, for logging,
monitoring, visualization, CI/CD, etc.
Basic log data Rich telemetry data with event logs, metrics and traces
Basic transaction success or failure log data Identifying individual connections and transactions with focus on the
four golden signals of latency, traffic, errors and saturation (e.g.
Telemetry transaction latency, query per second for traffic, errors for TCP
connection resets, etc.)
Advanced integration with logging and observability stack such as
ELK, Prometheus and Grafana
No support for CI/CD Supports continuous deployment because it can integrate with CI/
Continuous CD tools, such as Jenkins X, Spinnaker, etc.
Deployment

cyral.com | White Paper




About Cyral

Cyral delivers enterprise data security and governance across all data services such as S3, Snowflake, Kafka,
MongoDB, Oracle and more. The cloud-native service is built on a stateless interception technology that monitors
all data endpoint activity in real-time and enables unified visibility, identity federation and granular access controls.
Cyral automates workflows and enables collaboration between DevOps and Security teams to automate assurance
and prevent data leakage. Cyral is venture-backed by Redpoint, A.Capital, Costanoa and SVCI. Follow the company
on Twitter at @Cyrallnc

cyral.com/demo

cyral.com | White Paper




