
1

Challenges With Managing 
Permissions Using Database Roles

Databases enable RBAC through the database roles which are used for 


administering user access to schemas, tables and views. However, as 

organizations become more data driven and often have hundreds of users 

and applications accessing data stored in databases, data warehouses, and 

data lakes, governing the security of sensitive datasets becomes increasingly 

unwieldy in practice.

This white paper below describes the challenges of administering data 

security governance policies using database roles, and an alternative 

approach that addresses those challenges.

The Database RBAC Model

The database RBAC model comprises of the following:

A securable object: This generally includes databases, schemas, tables 

and views.

A role authorized to access the securable object: These are defined 

within the database. New roles can be created by administrators at any 

time.

Privileges assigned to the role: These privileges enumerate the actions 

that the role is authorized for. Examples would include the ability to 

create new roles, delete tables, create new schemas, read from specific 

tables, etc.

Database users: These are accounts that are created within the 

database. Individual users may be using distinct user accounts or shared 

accounts (these latter are generally referred to as service accounts).



2

Roles a database user is authorized to assume: Each user must assume 

a role to perform any action within the database. These mappings of 

users to roles are maintained within the database.

DB user 1

DB user 2

DB Role 1

DB Role 2

DB Role 3

Database

SChema 1

Table 1

Table 2

SChema 2

Table 3

APP 1

APP 2

In this model, the database role is the key artifact that is used to manage 

permissions for which user is allowed to do what within a database. All 

privileges are associated with a role and users must assume the appropriate 

role to perform the task they need.

Limitations of Using Database Roles for Data Security 
Governance

Using database roles to manage permission proves to be very cumbersome 

in practice, both when trying to tame an existing database that has been in 

use for some time, as well as when starting from scratch with a new workload 

and database. This is generally because of the following reasons:

Evolving needs of the data team: Managing permissions for roles 

mandates mapping groups of users with the same data access needs to 

the same set of roles. These mappings get out of date quickly as people 

join and leave, and new datasets and tasks show up. Historically, DBAs 

are skilled at managing data and systems, but are not custodians of 

access. Additionally, these database roles don’t inherit from typical IAM 

entitlements which makes keeping permissions in sync with users’ job 

functions infeasible. 



3

Coarse granularity of control: Enforcing policies using roles is hard 

because they are often too coarse-grained — roles are often granted at 

the schema, table or view level, and are cumbersome to maintain at 

column levels. Security teams, on the other hand, often care about 

column level and row level access to data, which creates a gap between 

their needs and the capabilities of database RBAC.

Not suitable as a security policy framework: In RBAC, each role grants 

certain privileges to the user and the overall set of privileges for a user is 

the union of privileges from their respective roles. On the other hand, a 

security policy framework needs to be based on a "least privilege" model 

where each policy can specify the set of users who can access the data 

and with what constraints. Access must be allowed only if none of the 

policies governing access to the data are violated. For example, if a PCI 

policy and a CCPA policy specify different sets of users authorized to 

access certain credit card numbers, only users authorized by both 

policies should be allowed to access this data.

Lack of semantic association with sensitive datasets: A common 

challenge that teams face is that looking at GRANT and REVOKE 

statements doesn’t inform security teams whether or not access is being 

given to any sensitive data. Generally, teams invest in data discovery and 

classification tools to tag sensitive datasets, but there is no association 

between those tags and database roles.

Lack of transparency: When it comes to security and governance 

policies, security teams strive to prioritize transparency and 

collaboration to build a culture of trust. Database roles unfortunately 

are not helpful in this regard, because of limited tooling to report on 

(often complex) inheritance hierarchies and database-specific logic of 

how privileges are inherited.

Shadow access: Many users access databases using an application (BI 

tool, notebook, etc) which accesses data using a service account / single 

role, generally with a large number of privileges. This makes it 

impossible to manage those users differently from each other. 

Addressing this requires repetitive permissions management across 

multiple tools and applications, which is challenging.



4

Lack of separation of duties: Most security teams lack the know-how, 

tools and bandwidth to administer database roles across a large team of 

users. As such, they have to resort to asking the data teams to 

essentially manage roles and privileges on their own, resulting in a lack 

of separation of duties, a cornerstone of most security and governance 

programs.

Challenge Consequence

Users accessing using tools 
and apps

Shadow access which violates 
policies

Fluid user-to-role assignment
Over-permissions privileges 
and dormant roles

Roles and privileges managed 
by data teams

Lack of separation of duties 
and assurance

Lack of clear reporting of roles 
and privileges

Increased risk and complex 
remediation

Permissions granted on tables 
and views

Difficult to provide row and 
column level policies

Permissions not based on a 
least privilege model

Not possible to create multiple 
independent policies 
governing access to the same 
data

Lack of visibility into where 
sensitive data resides

Difficult to timely update 
grants based on creation or 
deletion of sensitive data



5

What are companies doing today?

The conventional approach to managing permissions within databases 

comes down to the following:

Inventory creation: Build an inventory of all users, roles within the 

database, all privileges associated with each role, and all schemas, 

tables or views with sensitive data in them.

Analyze roles: Understand for each roles what privileges have not 

been exercised in the last 90 or 180 days.

Analyze users: Build a complete map of which user can access 

what sensitive datasets, using a combination of the roles that they 

are assigned.

Armed with this analysis, teams then routinely prune excessive 

privileges, put to rest dormant roles, and refresh what users are 

mapped to which roles. These tasks are typically performed every 3-6 

months to take care of drifts in privileges and configurations as the 

needs of the data team evolve, new data models are acquired, and 

users join and leave the teams.

This process is often very tedious and breaks down at scale, resulting in 

risks and inefficiencies. There are several tools, such as DSPM, which 

attempt to smoothen these workflows, but ultimately result in only 

minor improvements on status quo (for more details, read our blog).

The Solution: Data Security Contracts

A data security contract is a shared understanding between data teams and 

security teams that documents who is authorized to access which data and 

with what constraints. In the context of data engineering, the term data may 

refer to any set of databases, schemas, tables, views, columns or rows. This 

contract must be enforceable, typically through a set of policies which can be 

easily reviewed by both data and security teams.  Additionally, the contract is 

associated with an ever evolving index of tags which results from a 

continuous data discovery and classification process.

https://cyral.com/blog/dont-do-data-security-poorly-and-manually/


6

Characteristics of a Data Security Contract

Decoupled from database roles to streamline management: All 

policies are specified on user identities (and associated entitlements and 

SSO groups) instead of database roles to centralize management and 

enforce separation of duties.

Integrated with IAM to align with corporate standards: Permissions in 

a contract are integrated with entitlements defined in IAM systems  

which ensures that security policies align with broader organizational 

standards, enhancing security and governance.

Policy as Code to promote transparency and automation: By 

expressing policies as code and leveraging existing IAM systems, it's 

possible to automate and standardize entitlements, improving efficiency 

and reducing the chance of human error.

Enforced on direct and application users: Policies must be enforced 

uniformly on both direct and application users - so if someone accesses 

a dataset through a console or a BI tool, the policy is applied 

consistently. This eliminates the challenges and risks associated with 

shadow access.

Coupled with a continuous data discovery & classification process: For 

policies to be effective, they must operate on all sensitive data in scope. 

As such they must be specified on data tags that get updated 

continuously as the schema and datasets evolve, generated by an 

ongoing data discovery and classification process.

Based on the principles of least privilege: Typically, multiple teams will 

be involved in specifying data security and governance policies, 

eventually resulting in overlap and conflicts. Therefore, the most 

restrictive constraints specified for accessing a certain data item among 

all policies must be enforced.



7

A data access model based on a data security contract is illustrated below.

Database

SChema 1

Table 1

Table 2

SChema 2

Table 3

APP 1

APP 2

Enterprise


IAM

Policy


Enforcement

Data Access


Policies

Data Discovery


and Classification

Compliance report


and Logs

Benefits of a Data Security Contract

Users access data using their corporate identities and credentials. This 

means that it is possible to centrally grant and revoke privileges (for 

example, when users join, leave, or change roles in the organization).

New locations of sensitive data are continuously discovered and 

protected as applications evolve.

Uniform policies based on user entitlements are applied to the sensitive 

data regardless of where it is stored.

Security teams can create and update data access controls and policies 

without needing to know database specific commands and concepts. 

The data teams can focus on their core mandate instead of being forced 

to implement and update security policies on behalf of the security 

team.



8

How Cyral Provides An Enforceable, Easy to Manage 
Data Security Contract

Cyral helps companies address this challenge by relying on user identities 

and entitlements as defined in the organization’s IAM services for defining 

policies. The below example illustrates how Cyral can help define highly 

granular permissions on datasets within a single or multiple databases.

The policy is defined on a dataset PII - what specific tables, columns, 

views, etc it refers to is completely abstracted away from the user. Cyral 

performs continuous discovery & classification to keep this tag up-to-

date.

Cyral can be leveraged as a gateway for all privileged operations - 

including reads, updates, deletes, etc.

Policies specify what operation is permitted by which user, and their 

information and entitlements are pulled from customers’ IAM services - 

this eliminates the need to manually update policies as the entitlements 

evolve.

The operations themselves - masking, row limits, network constraints, 

etc - are made consistent across various databases, even when they are 

not supported within the database themselves.

All orchestration can be easily linked to customers’ existing tools for 

logging, ITSM, etc.



About

Cyral provides controls for privacy, compliance, governance and protection 

thereby reducing risk, complexity, and cost for managing structured data. The 

Cyral platform discovers data, unifies access controls for users and 

applications, enables fine-grained authorization policies and provides 

complete monitoring and reporting. This comprehensive coverage enables 

risk-based governance, limits the blast radius of data-related incidents and 

reduces overhead and costs. Cyral’s technology allows customers to 

implement data security controls using their existing, centralized 

entitlements, thereby simplifying administration and automating 

remediation. Customers use Cyral to accomplish least privilege, data 

minimization, spillage prevention and Zero Trust.

For more information, visit www.cyral.com or follow @CyralInc on X.


